Climate Change & Soil and Water Conservation

TRENT FORD

ILLINOIS STATE CLIMATOLOGIST ILLINOIS STATE WATER SURVEY/PRAIRIE RESEARCH INSTITUTE UNIVERSITY OF ILLINOIS, URBANA-CHAMPAIGN

PRAIRIE RESEARCH INSTITUTE

- CO₂, CH₄, H₂O (among others) permit solar radiation to enter the Earth system, but absorb outgoing terrestrial radiation
- Their concentration of these gases, namely CO₂, CH₄, H₂O, varies in time due to natural and anthropogenic causes

The Earth's greenhouse effect

- We have observed a consistent increase in CO₂ concentrations over the last 60 years
- June 2021: 419 ppm

The Earth's greenhouse effect – Historically

British Antarctic Survey

Global Warming

Climate Change

Atmospheric Circulation

Ocean Circulation

Precipitation

We're Getting Wetter

Precipitation Trends (1895 – 2020)	Winter	Spring	Summer	Fall
Northern IL (inches per decade)	+0.06	+0.16	+0.25	+0.11
Central IL (inches per decade)	+0.03	+0.10	+0.18	+0.08
Southern IL (inches per decade)	+0.03	+0.25	+0.09	+0.14

Source: NOAA NCEI

More Intense Precipitation

Event	Rainfall	1989 Estimate	2019 Estimate
January 2020, Vandalia	5.6" in 3 days	20-year	5-year
May 2020, Chicago	7.88" in 4 days	50-year	25-year
June 2020, Quincy	6.85" in 4 days	20-year	10-year
July 2020, Peoria	5.80" in 6 hours	???	100-year
August 2020, Scott AFB	5.36" in 3 hours	???	125-year
June 2021, Bloomington	10.19" in 3 days	???	250-year

Projections: Wetter Overall, Changing Seasonality

Model Projections:

- Continued increased precipitation & intensity – largest in northern IL
- Large seasonal differences majority of projected increase in winter + spring
- Uncertainty of summer precipitation no change to small decrease

Change in Seasonal Total Precipitation Higher Emissions (RCP8.5) Late 21st Century (1990–2019 to 2070–2099) Winter (DJF) Spring (MAM)

Fall (SON)

Source: NCICS & Univ. Edinburgh

Projections: More Intense Rainfall

Model Projections:

- (Top panel) Increases in total annual precipitation, not segregated by emission scenario
- (Bottom panel) More intense precipitation increases, but is more sensitive to emissions
- 6 additional extreme rainfall days per decade between high and low emission scenarios

Drought

- Summer precipitation projected to change by 0 to 5% by late century (medium-low confidence)
- Summer evaporation increases demand at DeKalb has increased by 0.17" per year since 1990
- Low confidence in summer precipitation, evaporative demand, and response to changes in both/either

Temperature

We're Getting Warmer

Last 120 Years:

- Statewide annual average temperature has increased by 0.10°F per decade
- Warming trends in winter & spring are much larger than summer & fall
- Largest change in daily minimum temperatures

Γ

Longer Growing Season

- Earlier last spring freeze + later first fall freeze = longer growing season
- New 30-year average growing season is 10 to 25 days longer than 1971-2000 average

Soil Temperatures

- Soil temperatures have similar increasing trend as air temperature
- Soil temperatures in Illinois have increased in all seasons, but largest change in late summer/early fall
- October 4" soil temperature under sod in Belleville has increased 0.13°F per year since 1989
- September 4" soil temperature in DeKalb has increased 0.17°F per year since 1989

Illinois Climate Network, https://www.isws.illinois.edu/warm/soil/

Projections: Much of the Same

Model Projections:

- Continued warming in all seasons largest in winter
- Higher frequency of very hot days (> 95°F) and very warm nights (> 70°F)
- Magnitude of change is very dependent on emission scenario... fewer emissions = less warming
- 30 fewer 95°+ days and 70°F nights between lower and higher emission scenarios by 2080 in central Illinois

Impacts

More Intense Precipitation

- Increased runoff and more rainfall going to streamflow
- Higher risk of flooding
- Less precipitation "yielded" for surface storage, could increase likelihood of drought impacts

Annual average precipitation, streamflow, and evapotranspiration for the Vermilion River Watershed (inches yr⁻¹).

Periods	Precipitation	Streamflow	Estimated Evapotranspiration
1932-2016	37.1	9.9	27.2
1932-1964	35.0	7.7	27.3
1970-2016	38.5	11.6	26.9

Kelly *et al.* (2018)

Observed trends in flooding across the Midwest Mallakpour & Villarini (2015)

Soil Erosion

- New estimates suggest 30 50% of A-horizon has been lost in the Midwest since 1800s
- Estimated annual crop losses related to soil erosion range from \$10,000 to \$40,000 per farm in Illinois
- Reduced resilience to prolonged dry conditions
- Higher sedimentation rates and water quality issues from nutrient runoff
- Soil health degrades with erosion, economic losses difficult to quantify

Forest Ecosystems

Tree survival rate with (light gray bars) and without (dark gray bars) Japanese stiltgrass in eastern U.S. (from Aronson & Handel, 2011)

Aquatic Ecosystems

- Higher water temperature affects suitability, reproduction, survival rates
- Warm vs. cold water fish species impacted differently
- Warmer water + nutrient runoff from agricultural fields increase risk of harmful algal bloom in lakes and streams
- Pressure from invasive species that may be more suitable for warmer environment

Agriculture

- Longer growing season + higher CO₂ could benefit commodity crops
- Warmer winters = more insect pests, crop/livestock disease risk, fewer winter chill hours
- Wetter springs & more intense rainfall = soil erosion and nutrient runoff issues, less flexible treatment and planting
- Hotter summers = more evaporation and higher risk of drought impacts when dry
- Physical health impacts from exposure to heat, wet soils, and higher risk of injury from compressed windows
- Mental health impacts from a more challenging climate + market issues

What Can We Do?

ILLINOIS Illinois State Water Survey PRAIRIE RESEARCH INSTITUTE

Mitigation & Adaptation

- Decrease GHG emissions + increase sequestration
- Climate Resilient Agriculture
 - Widespread soil conservation practices
 - Forages and small grains, conservation grazing
 - Local food supply/demand chains
- Sustainable development
 - Greenspace, accessible transportation
 - Diverse, climate resilient urban canopy
 - Water management through engineering and design
- Natural Resources
 - Habitat restoration water/flood management
- Planning
 - Just transition
 - Hazard mitigation plans include changing climate/risk

statecli@isws.illinois.edu | twford@illinois.edu

stateclimatologist.web.illinois.edu | 😏 @ILClimatologist

